

# ASSESSMENT OF EDIBLE WILD MUSHROOMS VALUE CHAIN AND ITS CONTRIBUTION TO LIVELIHOOD IMPROVEMENT IN MBINGA AND SONGEA DISTRICTS - MASTER THESIS FOR SOKOINE UNIVERSITY OF AGRICULTURE

#### DORICE CLEMENT MAVINDI

2021





## ASSESSMENT OF EDIBLE WILD MUSHROOMS VALUE CHAIN AND ITS CONTRIBUTION TO LIVELIHOOD IMPROVEMENT IN MBINGA AND SONGEA DISTRICTS, TANZANIA

#### **DORICE CLEMENT MAVINDI**

A DISSERTATION SUBMITED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL AND NATURAL RESOURCE ECONOMICS, SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA

#### **ABSTRACT**

The study assessed edible wild mushrooms value chain and its contribution to livelihood improvement in Songea and Mbinga disricts, Tanzania. Data were collected through questionnaire survey, focus group discussions, mushrooms' inventory, direct observation and literature search. Six plots in six villages were established and used to collect, identify and record names, uses and weights mushrooms. After recordings the mushrooms, the quality collected were returned to the collectors. On average about 4.13 kg of mushroom were collected per plot. The prices ranged from TZS 2000 to 5000 per kg depending on type of mushroom. The value chain of edible wild mushroom in study areas consists collectors and consumers as key actors. Generally, value chain is dominated by women (73.3%) and men (26.7%). Collectors collects one up to six species mainly from *Amanita*, Russula, Cantharellus and Lactarius species and collection of edible wild mushrooms is done one day up to seven days, selection of species to be collected depending on availability, preferences, storage possibility and non-poisonous. The mushrooms that were sold are fresh and dried, 60.0% of respondents sold fresh mushrooms, 33.3 both dried and fresh and 6.7% dried. Generally, edible wild mushroom contributes to livelihood for those engaged in collections and trade and provide alternative income for accessing social services but also can boost others productive activities. Edibility of the mushroom was identified mainly using local indicators. Training for domestication and preservation was identified as key for increasing commercialize of the product.

#### **DECLARATION**

| I, Dorice Clement Mavindi do hereby declare to the Senate of S        | Sokoine University of  |
|-----------------------------------------------------------------------|------------------------|
| Agriculture that this dissertation is my own original work done       | within the period of   |
| registration and that it has neither been submitted nor being concurr | ently submitted in any |
| other institution.                                                    |                        |
|                                                                       |                        |
|                                                                       |                        |
| <u> </u>                                                              | <u>.</u>               |
| Dorice Clement Mavindi                                                | Date                   |
| (MSc. Candidate)                                                      |                        |
| The declaration is confirmed                                          |                        |
| <u> </u>                                                              | <u>.</u>               |
| Prof. J. M. Abdallah                                                  | Date                   |
| (Supervisor)                                                          |                        |

#### **COPYRIGHT**

No part of this dissertation may be reproduced, stored in any retrieval system, or transmitted in any form or by any means without prior written permission of the author or Sokoine University of Agriculture in that behalf.

#### **ACKNOWLEDGEMENTS**

I am heartily thankful to ALMIGHTY GOD in the first place, for the strength, knowledge and health from very beginning of my education journey till this point.

I would like to express my gratitude to my supervisor Prof. J.M. Abdallah, for his patience, guidance and support, his encouraging words and thoughtful, detailed feedback have been very important to me. I am indebted to Prof. Y. M. Ngaga for his continued guidance and endless advices for my study. Am also grateful to all my lectures from Department of Forest and Environmental Economics I have benefited wealth of your knowledge during my studies, May God bless you abundantly.

This study was carried under with the financial support from Forestry and Value Chains Development program (FORVAC) am extremely thankful for your support.

I am grateful for my family, my parents and my older brother whose constant love, and material support for my studies keep me motivated and confident. My accomplishments and success are because they believe in me. I owe my deepest gratitude to James Thobias Mushi am forever thankful for the unconditional support throughout my entire studies and success of this study who passed through difficult times during data collection.

Am thankful to many people who took their time and experiences during data collection and analysis, especially Mr. Mutunda from Songea and countless officers. Thanks to my fellow students for their countless support, God bless you all.

#### **DEDICATION**

This work is dedicated to my beloved family, my father Clement Frank Mavindi, my mother Marium Karata Maghembe and my older brother Edward Clement Mavindi for the immense sacrifices they made to build a good foundation for my career and my life in general, may God bless them abundantly.

#### **TABLE OF CONTENTS**

| ABSTRACT                                      | i    |
|-----------------------------------------------|------|
| DECLARATION                                   | ii   |
| COPYRIGHT                                     | iii  |
| ACKNOWLEDGEMENTS                              | iv   |
| DEDICATION                                    | V    |
| TABLE OF CONTENTS                             | vi   |
| LIST OF TABLES                                | viii |
| LIST OF FIGURES                               | ix   |
| LIST OF APPENDICES                            | X    |
| ABBREVIATIONS                                 | xi   |
| CHAPTER ONE                                   | 1    |
| 1.0 INTRODUCTION                              | 1    |
| 1.1 Background information                    | 1    |
| 1.2 Problem statement and justification       | 2    |
| 1.3 Objectives                                | 3    |
| 1.4 Research questions                        | 4    |
| CHAPTER TWO                                   | 5    |
| 2.0 LITERATURE REVIEW                         | 5    |
| 2.1 Definition of key terms                   | 5    |
| 2.2 Sustainable livelihood approach           | 5    |
| 2.3 Value chain of edible wild mushroom       | 7    |
| CHAPTER THREE                                 | 9    |
| 3.0 METHODOLOGY                               | 9    |
| 3.1 Description of the study area             | 9    |
| 3.2 Research design                           | 9    |
| 3.3 Sampling technique and sample size        | 10   |
| 3.4 Data collection and analysis by objective | 10   |
| CHAPTER FOUR                                  | 13   |

| 4.0 RESULT AND DISCUSSION                                            | 13 |
|----------------------------------------------------------------------|----|
| 4.1 Types of wild mushrooms available in Songea and Mbinga districts | 13 |
| 4.2 Edible wild mushroom value chain                                 | 16 |
| 4.3 Contribution of edible wild mushroom to livelihood improvement   | 19 |
| CHAPTER FIVE                                                         | 34 |
| 5.0 CONCLUSION AND RECOMMENDATION                                    | 34 |
| 5.1 Conclusion                                                       | 34 |
| 5.2 Recommendations                                                  | 36 |
| REFERENCE                                                            | 38 |
| APPENDICES                                                           | 44 |

#### LIST OF TABLES

| Table 1: Species of wild mushroom available in Ruvuma Region      | 14 |
|-------------------------------------------------------------------|----|
| Table 2: Involvement in edible wild mushroom activities           | 19 |
| Table 3: Mushroom species collected                               | 21 |
| Table 4: Types of mushrooms sold                                  | 22 |
| Table 5: Packaging tools                                          |    |
| Table 6: Selling place of edible wild mushroom                    | 23 |
| Table 7: Organization membership                                  | 24 |
| Table 8: Money borrowing                                          |    |
| Table 9: Purposes of loan taken                                   |    |
| Table 10: Saving Money obtained from selling edible wild mushroom |    |
| Table 11: Reasons for saving                                      | 27 |
| Table 12: Means of money saving                                   |    |
| Table 13: source of knowledge                                     |    |
| Table 14: House ownership                                         | 30 |
| Table 15: Assets owned by individuals                             |    |
| Table 16: Access to essential services                            |    |
| Table 17: Means of forest conservation                            |    |
|                                                                   |    |

#### LIST OF FIGURES

| Figure 1: The sustainable livelihood framework | 6  |
|------------------------------------------------|----|
| Figure 2: Value chain actors and their roles   | 18 |

#### LIST OF APPENDICES

| Appendix 1: Questionnaire for collectors     | 44 |
|----------------------------------------------|----|
| Appendix 2: Focus group discussion questions | 51 |

#### **ABBREVIATIONS**

FORVAC Forestry and Value Chains Development Programme

NAFORMA National Forest Resources Monitoring and Assessment

NWFPs Non-Timber Forest Products

TZS Tanzanian Shilling

VICOBA Village Community Bank

#### **CHAPTER ONE**

#### 1.0 INTRODUCTION

#### 1.1 Background information

Mushroom is a delicious food consumed in many parts of the world. It is also called the future vegetable which is a guarantee for food insecurity, malnutrition problem and has medicinal value, are nutritious, medicinal and functional food (Getachew *et al.*, 2016). It is considered as a health food as it contains low calories, high protein, dietary fiber, vitamins, and minerals (Barros *et al.*, 2008; Kalac, 2013). According to Cheung (2010) different species of mushroom contains different amount of carbohydrates which usually ranges between 35-70%.

Gathering of wild food has been practiced for many centuries by ancestors and is still practiced in different parts of the world, Bharucha and Pretty (2010) testifies that around one billion people around the world reported to consume gathered foods and three hundred million consume gathered food as the beginning of millennium. Global mushroom market has been segmented by product type, form, distribution channel and geography (Dublin, 2018). In 2017, button mushroom segment dominated the global mushroom market by product type.

In Africa, over two thirds of the population rely on forest products, either in the form of subsistence or as a cash income derived from a range of Non-Timber Forest Products (NTFPs), including edible mushrooms (Rammeloo and Walleyn, 1993). Africa constitute

at least 25% of the total mushroom biodiversity in the world which contribute up to 0.4% of the total mushroom sales and new mushroom products on the global market (Yongabi, 2014).

Miombo woodlands make up a significant proportional of total forested land in Tanzania, and most of it is in general lands. The woodlands constitute the largest more-or-less contiguous block of deciduous tropical woodlands and dry forests in the world, and are home to over 40 million people and the sources of products that serve the basic needs, and one of the products is edible mushroom (Abdallah and Monela, 2007). Natural Miombo ecosystems provide high potential of producing indigenous mushrooms (Bloesch and Mbago, 2008). It has been documented that there are more than 60 edible mushroom species either domesticated or wilderness which have been identified in Tanzania from the orders *Boletales, Cantharellales* and *Amanitales* (Mbago 2008; Tibuhnwa 2013)

#### 1.2 Problem statement and justification

Tanzania is one of the countries endowed with high forest diversity in the world (Chamuya, 2016). The forest land cover about 48.1 million ha and contribution of woodlands to the total forest coverage in Tanzania is high (73.9%) compared to other biomes (NAFORMA, 2015). The woodland are important sources of wood for construction and energy, water retention, and Non-Wood Forests Products (NWFPs) such as mushroom. The non-wood forest products are harvested and used for food and income.

The forest and woodlands coverage in Ruvuma region are about 74% (NAFORMA, 2015). Therefore, Ruvuma still has higher amount of forest and woodland coverage compared to

other regions. That means availability of the non-wood forest products especially mushroom is high. Edible wild mushroom is one of sources of food and income in Ruvuma region, this forest product is considered to contain high amount of proteins which can substitute meat (Ngaga *et al.*, 2006).

Various researches have been conducted on edible wild mushroom (e.g., Karmann, 2000; Ngaga *et al.*, 2006; Bloesch and Mbago, 2008; Tibuhwa, 2013; Chelela *et al.*, 2014). Majority of these studies are on the biology of mushroom. Little has been researched on value chain of edible wild mushrooms and its contribution to livelihood improvement in Ruvuma. This is one of the factors that made its utility value to be not sufficiently accounted and unavailability of statistics on contribution of the forest resources to the economy. Domestication of mushroom to increase quantity and quality would depend on availability of various things, one of them is research information on the value chain development. Besides playing wider domestic roles and income at local level, edible wild mushroom can also be a good source of foreign exchange earnings. Therefore, aim of this study assessed the value chain of edible wild mushroom in Mbinga and Songea Districts and its contribution to livelihood improvement.

#### 1.3 Objectives

#### 1.3.1 Overall objective

The overall objective of the study was to assess the value chain of edible wild mushroom and its contribution to livelihood improvement in Mbinga and Songea Districts.

#### 1.3.2 Specific objectives

- To identify types of wild mushroom that available in Mbinga and Songea
   Districts;
- To map actors involved and their roles in edible wild mushrooms in Mbinga and Songea Districts; and
- To assess contribution of edible wild mushrooms to livelihood improvements in Mbinga and Songea Districts.

#### 1.4 Research questions

- i. How many types of wild mushroom available in the Mbinga and Songea Districts?
- ii. Who are the actors involved in edible wild mushrooms value chain in Mbinga and Songea Districts?
- iii. How edible wild mushrooms contribute to livelihood improvements in Mbinga and Songea Districts?

#### **CHAPTER TWO**

#### 2.0 LITERATURE REVIEW

#### 2.1 Definition of key terms

#### **Edible mushroom**

Edible mushrooms are the fleshy and edible fruit bodies of several species of macro fungi (fungi which bear fruiting structures that are large enough to be seen with the naked eye). They can appear either below ground (hypogeous) or above ground (epigeous) where they may be picked by hand (Adam, 2015). Edibility may be defined by criteria that include absence of poisonous effects on humans and desirable taste and aroma. Edible mushrooms are consumed for their nutritional and culinary value.

#### Value chain concept

The value chain is defined by Kaplinsky as the full range of activities which are required to bring a product or service from conception, through the intermediary phases of production, delivery to final consumers, and final disposal after use (Kaplinsky and Morris, 2001), individuals or groups who involve directly in the chain to create and delivering the products are called chain actors.

#### 2.2 Sustainable livelihood approach

A livelihood comprises the capabilities, assets (stores, resources, claims and access) and activities required for a means of living; a livelihood is sustainable which can cope with

and recover from stress and shocks, maintain or enhance its capabilities and assets, and provide sustainable livelihood opportunities for the next generation; and which contributes net benefits to other livelihoods at the local and global levels and in the short and long-term (Chambers and Conway, 1992).

#### Sustainable Livelihood Framework

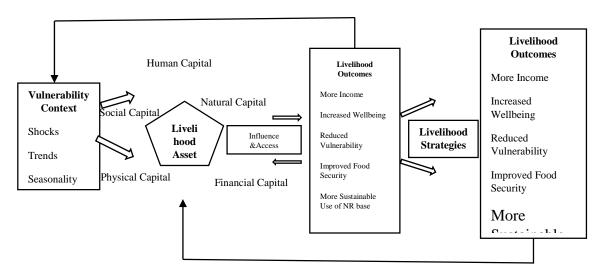



Figure 1: The sustainable livelihood framework

Source: Carney (1998)

The livelihood framework helps to understand the economic strategies of men and women in the community and to identify people 's activities in developing and sustaining their livelihood. The livelihood activities begin with the concept of livelihood and progress through the forms of capitals, structures and processes which shape people's options. Its analysis the concept of vulnerability of people are exposed to different kinds of risks, shocks and stresses.

Livelihood approaches based on the assets is relevant to analyzing the communities. Assets can be in the form of human, physical, financial, natural and social. Human capital reefers to skills, one's labor, and good health. Physical capital reefers to infrastructure and producer goods that are required to support livelihoods. Financial capital is the accessibility to cash, or its equivalent, for the quest of livelihood strategies. It includes savings in the bank, jewelry, livestock etc. Natural capital is the things obtained from the natural environment. Social capital is related to the relationship, networking, and cooperation among and between the members of the community. Identifying these assets among the communities is very important because it provides an understanding of how communities are able to survive from forest resources especially edible wild mushrooms.

#### 2.3 Value chain of edible wild mushroom

Kaplinsky and Morris (2000) defines value chain as a full range of activities which are required to bring a product or service from conception, through different phases of production (involving a combination of physical transformation and the input of various producer services), delivery to final consumers and final disposal after use". These activities include designing, production, marketing and support to get the final product or service to the end consumers.

According to (Gallman and Thomas, 2012), value chain map shows the flow of product and services among the major actors from early supply of inputs and production up to consumption. It summarizes major value chain actors, enterprises (input suppliers) and value chain supporters. The value chain also illustrates the different market channels that

a product passes before reaching the final consumer (Mesfin, 2012). Therefore, a value chain is an important tool to use for identifying bottlenecks, as well as possible opportunities that may not be apparent otherwise. Mushroom value chain actors add value when the product passes from one actor to another. There are different actors in edible value chain includes the following

**Traders:** This group forms the middlemen of the chain; they get products from mushroom collectors and then sell to the final consumers without any modification of the product. Their main function is to facilitate the distribution of the mushroom products (Fon *et al.*, 2013). The major actors in mushroom trade are categorized into collectors, suppliers and retailers. The activities of those actors are, collecting, sorting, packing and transporting to the next destination markets to either consumers or Supermarkets. Supermarkets tends to sell locally collected mushroom, their major activities are packaging, labeling and storing.

**Processors:** Processing is one of the mushroom value functions. According to (Tibrichu and Buykusenge, 2009) testifies that there is no special mushroom processing and packaging company to local and international market since mushroom sector is not well established. Rather, hotels, restaurants and cafeterias further process locally produced and imported mushroom into different dishes.

**Consumers:** Consumers are end users of mushroom in the value chain. Consumers purchase and use mushroom from producers, traders and processors (Getachew *et al.*, 2016).

#### CHAPTER THREE

#### 3.0 METHODOLOGY

#### 3.1 Description of the study area

The study conducted in Ruvuma Region, whereby two Districts Mbinga and Songea were covered. Ruvuma Region has an area of 63 670 km<sup>2</sup> and is located within the latitude of 10<sup>0</sup> 45'00''S and between longitudes 35<sup>0</sup> 40'00" E. According to the Tanzania National Census, 2012, the population of Ruvuma Region is 1 376 891. Rainfall average in the area is 1 169 mm per year.

The study area was selected since, its 65% of its forests it covered by miombo woodland (URT, 2010) which there is possibility of availability of abundant species of wild mushrooms since the miombo woodland provide high potential of producing indigenous mushrooms (Bloesch and Mbago, 2008). Mbinga and Songea districts are selected because are districts which its people engage more on edible wild mushroom activities. The study like this is very important to the area because it increase awareness about value chain of edible wild mushrooms as one of the forest resources and how people benefit from the forest resources.

#### 3.2 Research design

Proper design of a research work is important because it is helping researcher to carry out research smoothly and efficiently as possible (Kothari, 2002). This study will be undertaken by using a cross sectional research design.

#### 3.3 Sampling technique and sample size

#### 3.3.1 Socio-economic data

The study was taken in Mbinga and Songea districts where three villages from each district was purposive selected due to the abundance of edible wild mushroom. The sampling unit of this study were actors involved in edible mushroom activities who are collectors, consumer and also two people from each village as key informants. The sample size of the study was determined according to (Machumu, 2008) whereby 30% of population engaged in edible wild mushroom activities was selected. List of actors who engaged in edible wild mushroom activities were prepared by chairman of each village and 30% of actors were selected as sample by systematic random sampling were third individual selected.

#### 3.3.2 Inventory data

Inventory for wild mushroom were conducted to identify species of wild mushroom. Circular plots (as recommended by Paudel and Mendal, 2019) of 15 m radii was laid to collect required information. The sample size of the of plots depended on the number of points where respondents usually go for collection of edible wild mushrooms in the forest. Simple random sampling was employed.

#### 3.4 Data collection and analysis by objective

#### 3.4.1 To Identify types of Wild Mushroom Available in the Study Areas

Researcher conducted inventory to identify types of wild mushrooms available in the study area. Inventory for wild mushroom was conducted so as to identify types of wild mushroom available including edible and non-edible wild mushroom, names, uses of the wild mushroom and weights were in each plot researcher picked available mushroom and its weight was measured. Researcher matched photograph picture taken during field observation with fungus books for identification, color, and other feature was used to guide identification process. Two people from each village as key informant assisted identification process in term of local names of mushroom species.

#### 3.4.2 To Map Actors in Edible Wild Mushroom Value Chain in the Study Areas

The actors along the chain were identified through the use of focus group discussion. The actors for the study were collectors and consumers, each actor was expected to provide information on how he or she participate in the edible wild mushroom activities from where she or he start and where she or he ended, the flow of product from one actor to another, their responsibilities and roles on value addition along the chain of wild edible mushroom, also types of wild mushrooms they know as edible, criteria for identification and its seasonality. All data collected was content analyzed. The map illustrates the flow of edible wild mushroom from collectors to consumer was drawn.

### 3.4.3 To assess contribution of edible wild mushroom in livelihood improvements in Mbinga and Songea Districts

Information from actors involved in edible wild mushroom who was collectors, was collected on types of edible wild mushrooms they sell, quantity, price, and on how edible

wild mushroom improve their livelihood inform of Financial Capital, interview method was used to collect information includes how much they gain from edible wild mushrooms. Social Capital respondents were interviewed on how edible wild mushroom contribute to social resources including, membership of groups, relationships of trust, access to wider institutions of society upon which people draw in pursuit of livelihoods. Human Capital, information based on contribution of edible wild mushroom to the skills, knowledge, ability to labor and good health important to the ability to pursue different livelihood strategies will be collected from respondents through interview method. Physical Capital, respondents were interviewed so as to get information on how edible wild mushroom contributes to the basic infrastructure includes transport, shelter, water, energy, and communications and the production equipment and means which enable people to pursue their livelihoods.

#### **CHAPTER FOUR**

#### 4.0 RESULT AND DISCUSSION

#### 4.1 Types of wild mushrooms available in Songea and Mbinga districts

Circular plot of 15 m radii was used for the inventory of wild mushrooms in Songea and Mbinga District. Due to the seasonal nature of wild mushrooms (Mbago, 2008), not all species mentioned by respondents were found in the field. Individual do not collect edible wild mushrooms in different VLFR due to unavailability or just scanty availability. This is because mushrooms are influenced by type of vegetation cover which mostly of them is miombo woodland of natural occurrence as supported by Bloesch and Mbago (2008), Abdallah and Monela (2007). Consequently, individuals collect edible wild mushroom other random forest. Two people from each village as key informants guided researcher to the field and assisted identification process of the species in term of local names. Respondents were asked the total points that they are usually collecting edible wild mushroom. The researcher allocated numbers to the points, wrote the numbers in the separate pieces of paper, rolled it, and picked one at random. For each selected point, a circular plot of 15 m radius was laid down and the mushroom within it were examined for identification. Scientific identification was guided by Harkonen et al. (2003) to classify available species as edible or non-edible. Edible mushrooms were collected and weighted. The average weights per sample plot was 4.13 kg.

Most of non-edible mushroom species were unidentified by local names. This is because people concentrate on edible species, giving little attention on non-edible, (Chelela, 2013; Bloesch and Mbago, 2008). Table 1 shows local names and scientific names of wild mushrooms in the study area.

Table 1: Species of wild mushroom available in Ruvuma Region

| SN | Local       | Scientific name           | Storage          | SN | Non-edible     |
|----|-------------|---------------------------|------------------|----|----------------|
|    | name(s)     |                           |                  |    |                |
| 1  | Ulelema     | Amanita loosie            | Boiled and dried | 19 | Lactarius      |
|    |             |                           | by solar energy  |    | gymnocarpoides |
| 2  | Uhinda      | Russula Cellulata         | Boiled and dried | 20 | Amanita        |
|    |             |                           | by solar energy  |    | muscaria       |
| 3  | Unguyugu    | Cantharellus isabellinus, | Dried by solar   | 21 | Amanita        |
|    |             | canthrellus symoensii     | energy           |    | phalloides     |
| 4  | Linodo      | Boletus pallidissimus     | Boiled and dried | 22 | Cyptotrama     |
|    |             |                           | by solar energy  |    | asprata        |
| 5  | Mkufu       | Termitomyces letestui     | No means of      | 23 | Lactarius      |
|    | /ukulu/luku |                           | storage          |    | kabansus       |
|    | hu          |                           |                  |    |                |
| 6  | Mandondo    |                           | No means of      | 24 | Lacatius       |
|    |             |                           | storage          |    | luteopus       |

| 7 | 7 | Perepesu   | Russula aff. roseovelata  | Boiled and dried | 25 | Lactarius        |
|---|---|------------|---------------------------|------------------|----|------------------|
|   |   | /perepeta  |                           | by solar energy  |    | medusa           |
| 8 | 3 | Lukolombi  |                           | Boiled and dried | 26 | Lactarius        |
|   |   |            |                           | by solar energy  |    | tanzanicus       |
| 9 | ) | Mangauka   | Auricularia polytricha    | Dried by solar   | 27 | Lactarius        |
|   |   | и          |                           | energy           |    | pumilus          |
| 1 | 0 | Mapuli     | Termitomyces microcarpus  | Dried by solar   | 28 | Lactarius        |
|   |   |            |                           | energy           |    | xerampelinus     |
| 1 | 1 | Urundi     | Coprinus cinereus         | Dried by solar   | 29 | Lactarius        |
|   |   |            |                           | energy           |    | volemoides       |
| 1 | 2 | Magongolo  | Russula congoana, amanita | No means of      | 30 | Macrolepiota     |
|   |   | /jongoo    | mafingensis, amanita      | storage          |    | dolichaulabolet  |
|   |   |            | tanzanica, amanita        |                  |    | us               |
|   |   |            | masasiensis               |                  |    | spectabillissimu |
|   |   |            |                           |                  |    | S                |
| 1 | 3 | Kalungeya  | Cantharellus platyphllus, | No means of      | 31 | Lactarius heimii |
|   |   |            |                           | storage          |    |                  |
| 1 | 4 | Uyoga behe | Not found                 | Dried by solar   | 32 | Lactarius        |
|   |   |            |                           | energy           |    | densifolius      |
| 1 | 5 | Upowa      | Lactarius gymnocarpoides, | Boiled and dried | 33 | Lactarius        |
|   |   |            | lactarius edulis          | by solar energy  |    | denigicans       |
| I |   |            |                           |                  | l  | ļ                |

| 16 | Ngowo/ngu  | Agaricus cf campesh           | No    | means   | of   | 34 | Chlorophyllum |
|----|------------|-------------------------------|-------|---------|------|----|---------------|
|    | o          |                               | store | age     |      |    | molybdites    |
| 17 | Uyoga miti | Polporus moluccensis,         | No    | means   | of   | 35 | Agaricus      |
|    |            | armillaria mellea sensu lato, | store | age     |      |    | bingensis     |
|    |            | sarcosypha,                   |       |         |      |    |               |
|    |            |                               |       |         |      | 36 | Agaricus cf   |
|    |            |                               |       |         |      |    | campestris    |
| 18 | Vigong'ong | Termitomyces aurantiacus      | Drie  | ed by s | olar |    |               |
|    | 0          |                               | ener  | ·gy     |      |    |               |

Source: Field data (2021)

#### 4.2 Edible wild mushroom value chain

Ten people from each village of different aged group were involved in focus group discussion. Wild mushrooms are seasonal through the year where in Ruvuma Region it occurs from November up to March during rainy season with different species, some of species occur early when it starts rain season other occurs during the rains and other occurs in the ending of rains season, the same also reported by Adedokun and Okomadu (2016). Wild mushrooms found include both edible and inedible.

Mushroom collectors in Ruvuma locally use color, weight and smell to identify edible and inedible mushroom. Traditionally, they believe that inedible mushroom has a chocking smell and weighty compared to edible ones. Moreover, inedible wild mushrooms are not

eaten by any kind of flies and other insects as edible species does, as reported by Chelela et al. (2014), Adhikari (2004). None of these approaches is scientific, and thus identification by non-native individuals and researchers become difficult. Since individual use vernacular names example 'mangaukau' which in Swahili means 'masikio' and in English it means 'ears' it may be difficult for those who are not familiar with species of wild mushrooms because some edible and inedible species may have belonging to species which are belong to same family, for instance, 'Amanita loosii' and Amanita Phalloides'. This contradiction may lead to complications to other edible wild mushroom that can increase income to collectors but interpreted as inedible (Harkonen et al., 2003; Adhikari, 2004; Tibuhwa, 2016). Some respondents learnt and imitate to separate edible and inedible wild mushroom from their relatives like mother, grandparents and aunts (Chelela et al., 2014; Adedokun and Okomadu, 2016) and thus they do not have any reason in their consideration.

Different researcher reported about consumption and selling edible wild mushrooms in different parts around the world (Christensen *et al.*, 2005) this also observed in Songea District where most people collect edible wild mushrooms not only for their consumption but also for sale while Mbinga, mushroom are mainly collected for consumption. There are two actors who are involved in edible wild mushroom activities. These are collectors and consumers as also reported previously by Jahan and Singh (2019). Fig. 1 shows the map of product flow from one actor to another.

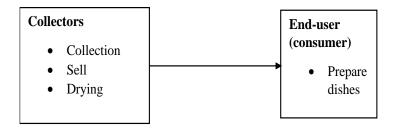



Figure 2: Value chain actors and their roles

Source: Field data (2021)

#### Collectors

Collectors form the first actor in edible wild mushrooms value chain. They go to the forest to picks edible wild mushroom and sell to the consumers. Their main activities are to collects edible wild mushrooms and sell, some of them sell either fresh or dried mushrooms and others sell both of them. In this first point of the chain, value added to the collected edible wild mushrooms through drying since, when they dried it gives long time to edible wild mushrooms even one to two years later where they can sell during the season where there is deficit of edible wild mushroom. They are locally preserved by boiling and them by using solar energy the same output reported by Ngaga *et al.* (2006), Chelela *et al.* (2014), Harkonen *et al.* (2003).

#### Consumers

This is the last actor in the edible wild mushrooms value chain, whose main role is to prepare dishes for their family depending on their preferences. Some of them adds oil, water, onions, tomatoes and salt while other may not add anything apart from salt and

water. All these treatments add value to edible wild mushrooms since they are not using it as the way they got from collectors and can thus be termed as traditional value addition (Harkonen *et al.*, 2003).

#### 4.3 Contribution of edible wild mushroom to livelihood improvement

#### 4.3.1 Social capital

Mushroom value chain is dominated by female (73.3%) while (26.7%) counts for men (Table 2). This is because, in Ruvuma Region main production activities is agriculture and practiced mainly by men. Women look for other activities to increase income for their families, one of the activities is selling vegetables and mushrooms (Ngaga *et al.*, 2006; Tibuhnwa, 2013; Chelela *et al.*, 2014). Different age groups engaged in edible wild mushroom collection activities. Those engaged in the collections were 25 years age and maximum were 72 years old.

Table 2: Involvement in edible wild mushroom activities

| Gender | Frequency | Percentage (%) |
|--------|-----------|----------------|
| Female | 22        | 73.3           |
| Male   | 8         | 26.7           |
| Total  | 30        | 100            |

Source: Field data (2021)

The edible wild mushroom collection activities done one day up to seven days per week by collecting from one up to six species depending on the availability, preference, and storage possibility (Apetorgbor *et al.*, 2005).

From Table 3, 29.7% collects *Amanita Loosii*, 26.4% *Russula Cellulata*, 18.7% *Cantharellus isabellinus*, 8.8% *Lactarius gymnocarpoides*, 6.6% *Cantharellus platyphllus*, 4.4% *Coprinus cinereus*, 4.4% *Boletus pallidissimus*, and 1.1% *Russula aff. roseovelata*. Also, respondent concluded that not all species collected are for sell but other are for household consumption were this because there are species that are more preferable by consumer than others so respondents asked to rank the first and last preferable species from one to three where one is high preferable, two medium preferable and three low preferable. *Termitomyces letestui*, *Amanita Loosii*, *and Cantharellus isabellinus* were ranked the first, *Russula Cellulata*, *Russula aff. roseovelata*, *Auricularia polytricha* were ranked second while *Coprinus cinereus*, *Boletus pallidissimus*, *Cantharellus platyphllus* and *Lactarius gymnocarpoides* ranked the third.

Table 3: Mushroom species collected

|                          | Re | sponses        |  |
|--------------------------|----|----------------|--|
| Mushroom species         | N  | Percentage (%) |  |
| Amanita Loosii           | 27 | 29.7           |  |
| Russula Cellulata        | 24 | 26.4           |  |
| Cantharellus isabellinus | 17 | 18.7           |  |
| Lactarius gymnocarpoides | 8  | 8.8            |  |
| Cantharellus platyphllus | 6  | 6.6            |  |
| Coprinus cinereus        | 4  | 4.4            |  |
| Boletus pallidissimus    | 4  | 4.4            |  |
| Russula aff. Roseovelata | 1  | 1.1            |  |
| Total                    | 91 | 100.0          |  |

Source: Field data (2021)

There are two kinds of edible wild mushrooms sold in Ruvuma Region in different markets which are dried mushrooms and fresh mushroom. About 60% of respondents sell fresh mushroom, 33.3, 6.7%, % sell both dried and fresh mushrooms and dried respectively (Table 4). The same reported by Chelela *et al.* (2014), Mbago (2008). In Ruvuma region it takes one day up to three to finish the collected edible wild mushroom, amount which remain after selling, it boiled and dried by solar energy for preservation (Ngaga *et al.*, 2006; Chelela *et al.*, 2014; Harkonen *et al.*, 2003).

Table 4: Types of mushrooms sold

| Types of mushrooms     | Frequency | Percentage (%) |
|------------------------|-----------|----------------|
| Fresh                  | 18        | 60.0           |
| Both (Fresh and Dried) | 10        | 33.3           |
| Dried                  | 2         | 6.7            |
| Total                  | 30        | 100.0          |

Source: Field data (2021)

From Table 5, 40% of respondents use packaging tools (plastic bags) for the edible wild mushrooms they are selling. About 60% of respondents do not use any kind of packaging tools they only divide mushrooms in a bundle and waits for the customers to come with their carrying tools for mushrooms. In different markets around the world, edible wild mushroom had been reported to be sold either loose or packed in different tools like plastic films (Jahan and Singh, 2019).

Table 5: Packaging tools

| Packaging | Frequency | Percentage (%) |
|-----------|-----------|----------------|
| No        | 18        | 60.0           |
| Yes       | 12        | 40.0           |
| Total     | 30        | 100.0          |

Source: Field data (2021)

#### 4.3.1.1 Selling place

In selected six villages at Ruvuma Region, edible wild mushrooms are sold at different two places which are markets where collectors take their collected edible wild mushroom to the market this accounts for 33.3%. some sell at their home place by door to door while sometimes consumer tend to go for the edible wild mushrooms for themselves at collector's houses and account for 66.7% (Table 6) where main customers are end users. In different parts of Tanzania, edible wild mushrooms tend to be sold at markets and homes by door to door but also along the road (Dougill *et al.*, 2013; Chelela *et al.*, 2014; Tibuhwa, 2013). But also, for those who sell their edible wild mushrooms in different markets said that there is availability of transportation means to the selling point where the most used transport is motorcycle.

Table 6: Selling place of edible wild mushroom

| Frequency | Percentage (%) |
|-----------|----------------|
| 20        | 66.7           |
| 10        | 33.3           |
| 30        | 100.0          |
|           | 20<br>10       |

Source: Field data (2021)

#### 4.3.1.2 Organization membership

50% (Table 7) of respondents had membership of different organization including Non-Governmental Organizations (NGO's) and different cooperative organization while

50.0% belonged to none. Being in different social organization means that they gain trust from their surrounding society (Rudd, 2000)

Table 7: Organization membership

| Organization membership | Frequency | Percentage (%) |
|-------------------------|-----------|----------------|
| Yes                     | 15        | 50.0           |
| No                      | 15        | 50.0           |
| Total                   | 30        | 100.0          |

Source: Field data (2021)

### **4.3.1.3** Money borrowing

Edible wild mushroom collectors are able to borrow money from different people surrounding them for the different purpose. Respondent are able to borrow from is 2000 TZS up to 100,000 TZS. The main source is from community organization and other source which are neighbors and cooperative society, the same about financial support also reported by Apetorgbor *et al.* (2005). By selling edible wild mushroom they are trusted by their surrounding society but also, they ensure themselves that if there is any emergency, they can be able to borrow money from other people and be able to return the loan after selling their products.

From the Table 8 below, 36.7% of respondent had a tendency of borrowing money while 63.3% they are not borrowing money. Respondent who has tendency of borrowing money they said they are able to return the money for tonight up to month.

Table 8: Money borrowing

| Money borrowing | Frequency | Percentage (%) |
|-----------------|-----------|----------------|
| No              | 19        | 63.3           |
| Yes             | 11        | 36.7           |
| Total           | 30        | 100.0          |

### 4.3.1.4 Purpose of taking loan

Different edible wild mushroom collectors take loan or borrow money from other people for different purposes. As shown in the Table 9, 27.3% borrow money for health care, 18.2% purchasing household assets while 54.5% for buying agriculture equipment and were able to return the loan within a month. Edible wild mushroom activities contribute to income generation which can help individual to be able to buy different assets and to get different services but also boost other economic activities such as agriculture where can contribute to improve standard of life. Contribution of wild mushroom collection to livelihood also reported by Chen (2004), Wang and Hall (2004).

Table 9: Purposes of loan taken

| Purpose of taking loan        | Frequency | Percentage (%) |
|-------------------------------|-----------|----------------|
| Buying agricultural equipment | 6         | 54.5           |
| Health care                   | 3         | 27.3           |
| Purchasing household assets   | 2         | 18.2           |
| Total                         | 11        | 100.0          |

#### 4.3.2 Financial capital

In Ruvuma Region, individuals collect edible wild mushroom in a range of about 2-35 kgs per week. The collected amount differs from one person to another depending on the collection frequency per week. The price per kilogram of mushroom ranges from 2000 to 5000 Tanzanian Shillings (TZS) implying that collection of wild food especially mushroom provide income to individuals as highlighted by Subedi (2001), Chen (2004), Degreef *et al.* (2016).

Table 10 below shows that 63.3% of respondent are able to save money obtain from the selling of edible wild mushroom while 36.7% do not save money after selling products. Those who save their money are saving daily while others save per week, this means that collection of wild mushrooms provide amount of money which can be used for different purpose and may be able the remains to be saved for future use (Dougill *et al.*, 2013; Tibuhwa, 2016).

Table 10: Saving Money obtained from selling edible wild mushroom

| Saving Money | Frequency | Percentage (%) |
|--------------|-----------|----------------|
| Yes          | 19        | 63.3           |
| No           | 11        | 36.7           |
| Total        | 30        | 100.0          |

### **4.3.2.1** Reasons for saving

The collection of edible wild mushroom provide amount of money which can satisfy the needs of individual also remain for saving for future use, respondent said that they are able to save from TZS 5000-300000, Table 11 shows the reasons why individual decide to save money, 78.9% are able to save money for the family security where the money can be used when there emergency to be solved, 15.8% they save money so that they can be able to take care of old age while 3.3% save money so that they can buy different assets like furniture, the same output reported by Apetorgbor *et al.* (2005).

Table 11: Reasons for saving

| Reasons for saving     | Frequency | Percentage (%) |
|------------------------|-----------|----------------|
| Family security        | 15        | 78.9           |
| Taking care of old age | 3         | 15.8           |
| Bought assets          | 1         | 5.3            |
| Total                  | 19        | 100.0          |

Source: Field data (2021)

#### 4.3.2.2 Means of money saving

In Songea and Mbinga districts especially in different villages, financial services like bank are poor since only 21.1% of respondents save their money to commercial banks while others save their money to local cash box and VICOBA which counts for 36.8% and 42.1% respectively (Table 12). Some available ways of saving money like local cash box are not safe way as money can be stolen (Muganda, 2016).

Table 12: Means of money saving

| Means of money saving | Frequency | Percentage (%) |
|-----------------------|-----------|----------------|
| VICOBA                | 8         | 42.1           |
| Local cash box        | 7         | 36.8           |
| Commercial banks      | 4         | 21.1           |
| Total                 | 19        | 100.0          |

Source: Field data (2021)

#### 4.3.3 Human capital

People engaged in edible wild mushrooms activities are able to take care of their family of minimum 2 and maximum 9 members. This means that, engaging in collection of wild food individuals are able to provide different human needs to his or her family (Ngaga *et al.*, 2006).

Table 13 shows that 10.0% of respondents gained the knowledge they have regarding edible wild mushrooms from their neighbors while 90.0% gained from relatives including

mother, grandparents. This means that the knowledge is transferred from generation to generation which may lead to collection of wild food including edible mushroom to be practiced from generation up to coming generations, as reported previously Chelela *et al.* (2014), Adedokun and Okomadu (2016).

Also, all respondents agreed that they didn't receive any kind of training about edible wild mushroom, this may lead to limited information regarding edible wild mushroom.

Table 13: source of knowledge

| Source of knowledge | Frequency | Percentage (%) |
|---------------------|-----------|----------------|
| Relatives           | 27        | 90.0           |
| Neighbors           | 3         | 10.0           |
| Total               | 30        | 100.0          |

Source: Field data (2021)

### 4.3.4 Physical capital

### 4.3.4.1 House ownership

By engaging in different edible wild mushroom can increase economic generation so can improve livelihood of individual involved in those activities. Table 14 below shows that 93.3% of respondent own houses as among of human needs, 3.3% rent while 3.3% staying at free houses. This means that money from selling edible wild mushroom can enable individuals to own houses but also to pay house rent, similar to this also reported by Dougill *et al.* (2013).

Table 14: House ownership

| House ownership | Frequency | Percentage (%) |
|-----------------|-----------|----------------|
| Owned           | 28        | 93.3           |
| Rented          | 1         | 3.3            |
| Free use        | 1         | 3.3            |
| Total           | 30        | 100.0          |

#### **4.3.4.2** Household Assets

Edible wild mushroom activities also enable individual to increase their income which can help them to own different household assets, this means these activities contribute to better standard of living. Table 15 shows that 56.8% are able to own telephones, 24.3% radio, 13.5% bicycle, 2.7% motorcycle while 2.7% sewing machine. This means that by engaging in these activities can lead to many benefits including owning different house assets this also testified by Dougill *et al.* (2013).

Table 15: Assets owned by individuals

|                  | Responses |                |
|------------------|-----------|----------------|
| Household Assets | N         | Percentage (%) |
| Telephone        | 21        | 56.8           |
| Sewing machine   | 1         | 2.7            |
| Motorcycle       | 1         | 2.7            |
| Bicycle          | 5         | 13.5           |
| Radio            | 9         | 24.3           |
| Total            | 37        | 100            |
|                  |           |                |

#### 4.3.4.3 Accessibility of essential services

In different parts of the world, collection of wild food such as edible mushrooms generate income to individual. This ensure them to access different services which are very important to their lives. As observed in Ruvuma Region, individuals who engaged in edible wild mushroom activities are able to access service like education and health as shown in Table 16 below where, 63.6% of respondents access education services for their children where they are able to buy pen, uniform, exercise book and related issue while 36.4% respondent access medical services like treatment, medicine and different related issue the same reported by Apetorgbor *et al.* (2005).

Table 16: Access to essential services

|                                     | Responses |                |
|-------------------------------------|-----------|----------------|
| Accessibility of essential services | N         | Percentage (%) |
| Medical facility                    | 16        | 36.4           |
| Education                           | 28        | 63.6           |
| Total                               | 44        | 100.0          |
|                                     |           |                |

## 4.3.5 Natural capital

In order to ensure collection of edible wild mushroom exist generation to generation so as to improve livelihood of individuals, there is huge need of conserving forests. In Ruvuma Region individual are able to conserve forest for future generation by different ways as shown in Table 17.

Table 17: Means of forest conservation

| Responses |                |
|-----------|----------------|
| N         | Percentage (%) |
| 22        | 50.0           |
| 22        | 50.0           |
| 44        | 100.0          |
|           | N 22 22        |

Source: Field data, (2021)

About 50.0% conserve forest by avoiding deforestation while 50.0% by avoiding forest burning. The similar ways reported by Subedi (2001).

#### **CHAPTER FIVE**

#### 5.0 CONCLUSION AND RECOMMENDATION

#### 5.1 Conclusion

The study assessed edible wild mushroom value chain and its contribution to livelihood improvement. The findings show that wild mushrooms occur during the rainy season which is November up to March, individuals didn't receive any kind of official training regarding wild mushroom so using local names learnt from their relatives and neighbors accounts for 90.0% and 10.0% respectively to separate edible wild mushroom from poisonous mushrooms. Ways that are used to identify edible from inedible mushrooms are color, weight and smell. Also, using vernacular name for species of mushroom and much concentrate on edible wild mushroom and give little attention to poisonous species. Based on the study, findings show that there are two main value chain actors for edible wild mushroom who are collectors (seller) and consumer and their roles are collecting, selling and consuming. The study has shown that collection of wild foods especially edible wild mushrooms is presented by gender aspect where women possess high position than men which 73.3% and 26.7% respectively and were aged from 25 up to 72 years old. The study shows that collection of edible wild mushroom activities done one day up to seven days and individuals collects one species up to six species. Individual sells different types of edible wild mushrooms which are fresh 60.0%, both dried and fresh 33.3% and dried 6.7% where the most selling place is home and markets which accounts for 66.7% and 33.3% respectively.

The findings show that edible wild mushrooms can contribute to livelihood improvement this because edible wild mushroom activities create job opportunities to an individual which provide money for them so as to be able to provide themselves with requirement they need, as shown in the findings that individual collect 2-35 kg per week and be able to get 2000-5000 TZS per kg. Money obtained from selling edible wild mushrooms individual are able to save and also use for different purpose, respondents save money so as to ensure family security, take care of old age and buying household assets as shown in the finding 78.9%, 15.8%, 5.3% respectively where most of saving ways used is VICOBA, local cash box and commercial banks which accounts for 42.1%, 36.8% and 21.1% respectively.

Through income gained from edible wild mushrooms, individuals are able to access different service like education services and medical facility account for 63.6%. and 36.4% respectively, able to own or rent house for shelter as shown 93.3% own,3.3% rented and 3.3% free use, to own different assets like telephone 56.8%, radio 24,3%, bicycle 13.5%, motorcycle 2.7% and sewing machine 2.7%. Individual engaged in edible wild mushroom activities are able to get loan from different source which able them to use it for different purpose like buying agriculture equipment 54.5%, health care 27.3% and purchasing household assets 18.2% and due to the income of edible wild mushroom they are able to return the loan from one night up to month. To ensure that edible wild

mushroom exist generation to generation individual ensure conservation of forest by practicing different ways like avoiding deforestation 50.0% and avoiding forest burning 50.0%.

#### 5.2 Recommendations

From the findings, discussion and conclusion made, the study recommends the following,

- Ensure that a proper preservation method for the collected mushroom. This will
  help to ensure that mushroom once collected are uniformly stored throughout all
  collectors for marketability purpose.
- Mushroom collectors need to be coordinated together to ease finding solutions to some challenges. There is a need for registering actors involved in mushroom value chain so that they can be facilitated and have access to financial support and infrastructural connectivity among actors.
- There should be provision of education to mushroom collectors on the proper ways
  of mushroom identification and classification. This is because, local communities
  use traditional ways to classify edible and non-edible mushrooms. Consequently,
  some edible mushroom in one area are considered inedible in the other area,
  leading to losing some values and utilities.
- There is a huge need of improving available transportation facilities and networks from collection centers to the market where collectors will be able to sell mushroom at a profit and where the demand is high. Shortage of proper transportation networks and facilities to connect collection points and market place

makes individuals who collect mushroom to sell them at a lower price and sometime not selling at all regardless of the available high demand in market centers.

#### **REFERENCE**

- Abdallah, J.M. and Monela, G. G. (2007). Overview of Miombo Woodlands in Tanzania.

  Management of Indigenous Tree Species for Ecosystem Restoration and Wood

  Production in Semi-Arid Miombo Woodlands in Eastern Africa. Proceedings of
  the First MITMIOMBO Project Work-shop held in Morogoro, Tanzania, 16<sup>th</sup>-12<sup>th</sup>

  February, 2007. 50pp
- Adams, P. (2015). Put the science of umami to work for you. Popular Science, Bonnier Corporation. 18pp
- Barros, L., Cruz, T; Baptista, P., Estevinho, L.M. and Ferreira I.C.F.R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. *Journal of Food and Chemical Toxicology*. 46(8); 2742–2747pp.
- Adhikari.M.K., Devkota. S., and Tiwari. R. D. (2005). Ethnomycological Knowledge on Uses of Wild Mushrooms in Western and Central Nepal. *Our Nature* 3:13-19pp.
- Bharucha, Z. and Pretty, J. (2010). The roles and values of wild foods in agricultural systems-Review. *Philosophical Transactions of Royal Society B*; 2913-2926pp.
- Carney, D. (1998). Implementing the Sustainable Rural Livelihood Approach, In: D.

  Carney (Ed). Sustainable Rural Livelihoods, what Contribution Can We Make?

  Paper Presented at the Department of International Development's Natural

  Resources Advisor's Conference. London, July 1998. 15pp.

- Chambers, R. and Conway, G.R. (1992). Sustainable Rural Livelihoods: Practical Concepts for the 21<sup>st</sup> Century. Institute of Development Studies, Brighton., UK. 296pp.
- Chelela, L.B., Chacha, M. and Mate, A.O. (2014). Wild edible mushroom value chain for improved livelihoods in Southern Highlands of Tanzania. *American Journal of Research Communication* 2(8): 1-14.
- Chen, Y.L. (2004). Song Rong (Tricholoma Matsutake), A Valuable Forest Mushroom from China; Consumption, Development and Sustainability. In: Kuster, K and Belcher, B (Eds). Forest Products, Livelihoods and Conservation: Case Studies of Non-Timber Forest Products Systems, Vol 1, Asia. CIFOT, Indonesia, 365pp
- Cheung, P C. (2010). The nutritional and health benefits of mushrooms. *Journal of Nutrition Bulletin* 35(4): 292-299
- Chimuya, N. (2016). Forest and Development: From development discourses to providing data for decision making. HELSINKI, FINLAND, 1ST MARCH, 2016. 72pp
- Dublin, (2018). *Global Mushroom Market 2018-2026 Report*. Research and Market, Ireland. 177pp
- FAO, (2009). *The State of Food Insecurity in the World Report*. Food and Agriculture Organization of United Nations, Rome, Italy. 59pp

- Fon D.E., Akongne, B.A., Bime, M.J.W. (2013). Mushroom Value Chain Analysis in the Western Highlands of Cameroon. *International Journal of Advances in Agriculture Science* 1(1); 15-21.
- Getachew, D.W; Zemedu, L.S and Eshete, A.W. (2016). Mushroom value chain analysis in Addis Ababa, Ethiopia. *Journal of Agricultural Extension and Rural Development* 8(8); 130-140 pp.
- Hahn, R. (2004) Pre-feasibility Study into Sustainable Development and Conservation a case study of Ruvuma region. 1-59pp.
- Kalac P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. *Journal of Science Food Agriculture* 93(2); 209–218.
- Kaplinsky, R and Morris, M. (2001). *A handbook for value chain research*. International Development Research Centre, Canada. 350pp.
- Karmann, M. (2003). Miombo utilization by small scale farmers in Handeni/Tanzania: bark harvesting as an example for ethnic and gender-oriented work. In: *Proceedings of the Seminar on Harvesting of Non-wood Forest Products*, 2–8 October 2000, International Agro-Hydrology Research and Training Center, Menemen-Izmir (Turkey). FAO, Rome, Italy. 102pp.
- Karunarathna, S., Mortimer, P., Xu, J., and Hyde, K. (2017). Overview of research of mushrooms in Sri Lanka. *Journal of Revista Fitotecnia Mexicana*, 40(4); 399–403.

- Kothari, C.R. (2002). *Research Methodology* 2<sup>nd</sup> *Edition*. New Age International (P) Ltd, New Delhi. 414pp.
- Latif, A., Shinwari, Z.K. and Begum, S. (2004). Potential and Market Status of Mushrooms as Non-Timber Forest Products in Pakistan. *Journal of Ecology and Application (Lyonia)*, 11(2); 7-19.
- Lowore, J. Miombo. (2006). *Woodlands and Rural Livelihoods in Malawi*. Bogor: National Library of Indonesia Cataloguing-in-Publication Data. 18-25 pp.
- Luoga, E.J., Kajembe, G.C., and Mohamed, B.S. (2006). Impact of Joint Forest Management on Handeni Hill Forest Reserve and Adjacent Communities in Tanga, Tanzania. 19pp.
- Machumu, R.M. (2008). Present Consumption and Forecasting of Sawn wood in Arusha and Moshi Municipalities. Unpublished MSc Dissertation, Faculty of Forestry, Sokoine University of Agriculture.1-87pp.
- Mbago, F. and Bloesch, U. (2008. The potential of wild edible mushrooms in the Miombo woodlands of the Selous-Niassa Wildlife Corridor for the livelihood improvement of the local population. Dar es Salaam: Ministry of Natural Resources and Tourism-Wildlife Division. 1-39pp.
- Mlambo, A. and Maphosa, M. (2017). Miombo Woodland Mushrooms of Commercial Food Value: A Survey of Central Districts of Zimbabwe. *Journal of Food Security* vol. 5(2): 51-57.

- Munishi, P.K.T. (2005). Fundamentals of Ecology Compendium. 67pp.
- NAFORMA (2015). National Forest Resources Monitoring and Assessment of Tanzania Mainland Main Results. Government printer. Tanzania. 124pp.
- National Research Center of Mushroom (2007). Post-harvest technologies of mushrooms,

  National council for agricultural research Annual Report, Chambaghat, India.

  69pp
- Ngaga, Y.M; Munyanzinza, E and Masalu, H.E. (2006). The Role of Wild Mushroom in the Livelihoods of Rural People in Kiwele Village, Iringa, Tanzania: Implications for Policy. *Journal of Discov. Innovation* 18(2): 92-97
- Paudel, P and Mandal, A.R, (2019). Comparing Growing Stock using Circular, Square and Rectangular Plots Shape in Inventory: A study from Community Forests in Chitwan District, Nepal. *Canadian Journal of Soil Science* 4(1); 448-454.
- Prasad, P; Chauhan, K; Kandari, L.S; Maikhuri, R.K; Purohit. A; Bhatt, R.P and Rao, K.S. (2002). Morchella Esculenta: Need for Scientific Intervention for Its cultivation in Central Himalaya. *Journal of Current Science* 82: 1098–1122.
- Rammeloo, J. and Walleyn, R. (1993). The edible fungi of Africa south of the Sahara. A literature survey. *Journal of Scripta Botanica Belgica* 5: 1-62.
- Tibrichu, H., and Buykusenge, M.R. (2009). Value chain analysis of the mushroom enterprise: Enterprise environment and equity in the Virunga landscape of the great lakes (EEEGL), Rwanda.1-119 pp.

- Tibuhwa, D. (2013). Wild mushroom- an underutilized healthy food resource and income generator: experience from Tanzania rural areas. *Journal of Ethobiology and Ethnomedicine* 9(49): 1-13
- URT (2010). Fourth National Report on Implementation of Convention on Biological Diversity (CBD). Government Printer, Tanzania. 81 pp.
- Weldekiros, M; Birhane, K; Woldegebrial, D. and Teweldebirhan, S. (2017).

  Characterization, Nutritional Value and Consumption Habit of Wild Mushroom in

  Tigray, Northern Ethiopia. *Journal of Aegean Agriculture Research Institute*(ANADOLU) 27(2). 97-115
- Winkler, D. (2004). Forest Use and Implications of the 1988 Logging Ban in the Tibetan Prefectures of Sichuan; Case Study of Forestry, Reforestation an NTFP in Litang Country, Ganzi Tap, China. In: Jiang, Z; Centritito, M; Lin, S and Zhang, S (Eds). The Ecological Basis and Sustainable Management of Forest Resources. *Journal of Informatore Botanico Italiano* 134 (Supplements 2). (In press).
- Yongabi, K. (2014). Current Developments in Mushroom Biotechnology in Sub-Saharan Africa. *International Journal of Micologia Aplicada* 16(2): 34-36.

## **APPENDICES**

| Part One: R  | despondent Profile (Please tick when appropriate)     |
|--------------|-------------------------------------------------------|
| Village      |                                                       |
| Sex          |                                                       |
| Age          |                                                       |
| Activity     |                                                       |
| 1. How       | many times you collect edible wild mushroom per week? |
|              |                                                       |
| 2. How man   | y types of edible wild mushroom you collect?          |
|              |                                                       |
| 3. Mention t | hem                                                   |
| i.           |                                                       |
| ii.          |                                                       |
| iii.         |                                                       |
| 4. Why you   | sell those types of edible wild mushroom?             |
| i.           |                                                       |
| ii.          |                                                       |

5. Do you sell fresh edible wild mushroom or dried mushroom?

|          | • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                                       |
|----------|-------------|-----------------------------------------|-------------------------------------------------------|
| 6. Do    | you pa      | ck your edible w                        | vild mushroom for selling?                            |
|          | i.          | Yes ( )                                 | ii. No ( )                                            |
|          |             |                                         |                                                       |
| 7. If :  | yes abov    | ve, which kind of                       | f packaging tool you are using?                       |
|          | i.          | •••••                                   |                                                       |
| 8. If :  | yes 6)w     | here are the sour                       | rce of packaging tools                                |
|          | i.          | Buying ( )                              | ii. Lending ( )                                       |
|          |             |                                         |                                                       |
| 9. Fro   | om whe      | re do you sell ed                       | ible wild mushroom you collect?                       |
|          | i.          | Market ( )                              | ii. Home ( ) iii. Along the road ( )                  |
| 10. If i | i) and ii)  | ) above, there is                       | any transportation means to the selling area?         |
|          | i.          | Yes ( )                                 | ii. No ( )                                            |
| 11.      | If yes      | above mention t                         | two transportation means                              |
|          | i.          |                                         |                                                       |
|          | ii.         |                                         |                                                       |
| 12.      | It tak      | es you how ma                           | ny days to finish edible wild mushroom that have been |
| coll     | ected?      |                                         |                                                       |
|          | i.          |                                         |                                                       |
| 13.      | Amou        | ınt which remain                        | as, how you preserve them for another day?            |
|          | i           |                                         |                                                       |
|          | ii.         |                                         |                                                       |

## Part two: Contribution of edible wild mushroom for livelihood improvements

## **Financial Capital**

| 14.    | How many kilogram you collect per week?                                               |
|--------|---------------------------------------------------------------------------------------|
|        |                                                                                       |
| 15.    | How much you sell per kilogram                                                        |
|        |                                                                                       |
| 16.    | Who are your main customer?                                                           |
|        | i. Wholesalers ( ) ii. Retailers ( ) iii. Processors ( ) iv. End-users ( )            |
| 17.    | Do you save money obtained from selling edible wild mushrooms?                        |
|        | i. Yes ( ) ii. No ( )                                                                 |
| 18.    | If yes, how often do you save money?                                                  |
|        | i. Daily ( ) ii. Weekly ( ) iii. Monthly ( ) iv. Yearly ( ) v. No specific time ( )   |
| 19.    | Why do you save money?                                                                |
|        | i. Family security ( ) ii. Takes care of old age ( ) iii. Bought asset ( ) iv. Others |
| (speci | fy)                                                                                   |
|        |                                                                                       |
| 20. W  | here do you save money?                                                               |
|        | i. Commercial Banks () ii. Local cashbox () iii. Others (specify)                     |

| •••••             |             | •••••           |                                 |            |                  |
|-------------------|-------------|-----------------|---------------------------------|------------|------------------|
| 21. How much i    | s your ho   | ouseholo        | l's savings exactly?            |            |                  |
| •••••             |             |                 |                                 |            |                  |
| Social Capital:   |             |                 |                                 |            |                  |
| 22. Are you a m   | ember of    | any org         | ganization?                     |            |                  |
| i. Yes ( )        | ii. I       | No()            |                                 |            |                  |
| 23. If yes, which | type of     | organiz         | ation?                          |            |                  |
| i. NGO ( )        | ii. Volun   | itary org       | ganization ( ) iii. Cooperative | e organiz  | ation ( )        |
| iv. Govt. o       | org () v.   | Club (          | ) vi. School Committee ( ) v    | vii. Relig | ious Committee ( |
| 24. Have you or   | the mem     | bers of         | your household borrowed me      | oney?      |                  |
| i. Yes ( ) i      | i. No ( )   | )               |                                 |            |                  |
| 25. When was th   | ne last tin | ne to bo        | rrow money?                     |            |                  |
|                   | •••••       | • • • • • • • • |                                 |            |                  |
| 26. State the sou | irces of b  | orrowin         | g                               |            |                  |
| Sources           | Yes         | No              | Sources                         | Yes        | No               |
| Private bank      |             |                 | Friends and relatives           |            |                  |

| Government   | Local trade union      |  |
|--------------|------------------------|--|
| Bank         |                        |  |
| NGO          | Community Organization |  |
| Cooperative  | Other (specify)        |  |
| Society      |                        |  |
| Money lender |                        |  |

| 27. | What is | the | amount of | loan | that | you | have | taken. |  |  | ? |
|-----|---------|-----|-----------|------|------|-----|------|--------|--|--|---|
|-----|---------|-----|-----------|------|------|-----|------|--------|--|--|---|

28. How did you make repayment?

## 29. State the purpose of taking loan

| Purpose of taking loan | Yes | No | Purpose of taking loan | Yes | No |
|------------------------|-----|----|------------------------|-----|----|
| Health care            |     |    | Buying land            |     |    |
| Festivals/social       |     |    | Buying livestock       |     |    |
| obligations            |     |    |                        |     |    |
| Paying dowry           |     |    | Buying agricultural    |     |    |
|                        |     |    | equipment              |     |    |
| Purchasing household   |     |    | Housing                |     |    |
| asset                  |     |    |                        |     |    |
| Children education     |     |    | Repayment of old loan  |     |    |

| Human capital                                                                          |
|----------------------------------------------------------------------------------------|
| 30. How many household members do you have?                                            |
| 31. How did you obtain knowledge and experience about edible wild mushroom activities? |
| i. Neighbors () ii. Friends () iii. Relatives () iv. NGO () v. TFS expertise (Govt.)   |
| ()                                                                                     |
| 32. Do you receive any training regarding edible wild mushroom?                        |
| i. Yes ( ) ii. No ( )                                                                  |
| Physical Capital                                                                       |
| 33. House ownership                                                                    |
| i. Owned ( ) ii. Rented ( ) iii .Free use ( )                                          |
| 34. Housing material used                                                              |
| i. Low (made of bamboo, paddy straw, jute stick, leaves, Mud, etc.) ( )                |
| ii. Medium (made of wood or galvanized metal) ( )                                      |

High (made of blocks and galvanized roof) ( )

35. What household asset do you own/have?

iii.

| Items            | Yes | No | Items           | Yes | No |
|------------------|-----|----|-----------------|-----|----|
| Telephone/mobile |     |    | Four wheelers   |     |    |
| Sewing machine   |     |    | Motorcycle      |     |    |
| Electric fan     |     |    | Bicycle         |     |    |
| Refrigerator     |     |    | Cassette player |     |    |
| Television       |     |    |                 |     |    |
| DVD player       |     |    |                 |     |    |
| Radio            |     |    |                 |     |    |

## 36. Accessibility of the following facilities

| Facility           | Yes | No |
|--------------------|-----|----|
| Medical facility   |     |    |
| Electricity supply |     |    |
| Postal service     |     |    |
| Education          |     |    |
| Banking facility   |     |    |

# Natural capital

| 37. How do you conserve forest so as to ensure you benefits from it for | or the next time? |
|-------------------------------------------------------------------------|-------------------|
|                                                                         |                   |
|                                                                         |                   |

### Appendix 2: Focus group discussion questions

- 1. How you can separate those which are edible and those which are not
- 2. Where do you learn to separate those kinds of wild mushroom?
- 3. Are edible wild mushrooms seasonal?
- 4. If yes above how many seasons that there is availability of edible wild mushroom
- 5. Mention them
- 6. What are the stages of edible wild mushroom value chain?
- 7. Who are the main actors in edible wild mushroom value chain?
- 8. What are the roles of each actor?
- 9. There are any supporters of edible wild mushroom value chain?
- 10. If yes above, who are they?
- 11. What are the roles of each actor?

